Demonstrating Ag Progress on Water Quality: Modeling the Effectiveness of EQIP-funded conservation practices.

Regulation 85 (5 CCR 1002-85):

- Promulgated in 2012.
- Nutrient control regulation (N & P) governing point and NPS pollution in surface waters.
- Provides for voluntary management of Nonpoint Sources of pollution by encouraging the use of BMPs.
- Carrot and Stick: After 10 years (2022), the WQCC may consider adoption of <u>additional prohibitions or precautionary measures</u> if voluntary controls on nonpoint sources are not effective in reducing nutrient loads and protecting classified uses.
- 2020: WQCC reviews progress on nutrient controls in protecting water quality.
- 2022: WQCC reviews "NPS controls and incentive program progress."

CDPHE's Road Map for Regulation 85 compliance:

What's been done so far?

Outreach and Awareness activities focusing on Regulation 85 and it's relevance to the Agricultural Industry.

- Presentations to agricultural producers and organizations
- Website, videos and factsheets (CSU) (https://coagnutrients.colostate.edu/)
- Edge-of-field monitoring studies (CSU ongoing).

Not much progress on actually quantifying large scale water quality improvement and protection in agriculture.

Project Goal:

"Measure" the Effects of EQIP Conservation Practices using CSU's model.

The project uses:

- 1) Existing NRCS EQIP conservation practice data
- 2) CSU CLEAN Center Edge-of-Field Conservation modeling tool.

Background on EQIP

USDA – NRCS Environmental Quality Incentive Program (EQIP)

- Colorado agricultural producers have used the NRCS Environmental Quality Incentive Program (EQIP) for decades to help implement conservation practices that protect and/or improve water quality and soil health.
- Conservation practices are standardized. Each practice has a standard and SOW.
- NRCS tracks EQIP-funded project details by practice(s) installed, acres, cost, year).
- Valuable Data, but never used to quantify progress on water quality.

Project Purpose:

- **1. Quantify** progress made in reducing pollutant losses from fields through the use of conservation practices.
- 2. Report conclusions to the WQCC and public.

Funding:

- Colorado Corn Administrative Committee
- Colorado Livestock Association
- Colorado Pork Producers Council
- State of Colorado

Project Roles: Brink, Inc. (Phil): Overall Project Coordinator CSU Clean Center (Tyler): Modeling & Analytical Lead / Co-coordinator

Connecting world class research with real-world water challenges

Colorado State University

HYDROLOGY

 Map of important hydrologic characteristics for the Colorado counties considered in this analysis

Legend

IRRIGATED AGRICULTURE (2015)

Combined

- ~2,140,000 Acres
 - ~48,000 fields

South Platte and Republican River Basin

- ~1,200,000 Acres
 - ~22,000 fields

Lower Arkansas River Valley Irrigated Agriculture

- ~430,000 Acres
 - ~17,000 fields

San Luis Valley Irrigated Agriculture

- ~510,000 Acres
 - ~8,900 fields

Colorado State University

COLORADO AGRICULTURAL SURVEY*

Overview

- Statewide survey
 - Targeted towards irrigated farms with at least 100 acres
 - Sent in 2011 (for the 2010 crop year)
- Focus on BMP adoption rates and costs
- Response rate of 37%, but still useable

Results

- Tillage
 - 60% Conventional
 - 30% Reduced
 - 10% Strip
- Fertilizer
 - 70% Split-Apply

*Technical Report TR13-10, Agricultural Experiment Station

Colorado State University

EQIP OVERVIEW

- USDA Cost-Share Projects
- Implemented between 2008 and 2018
- Examples Include
 - Irrigation
 - Tillage
 - Cover Crops
 - Prescribed Grazing
- CLEAN Center Modeling
 - Irrigation
 - Tillage
 - Filter Strips

195,000 EQIP ACRES OF SPRINKLER/DRIP IRRIGATION ADDED

201,000 EQIP ACRES OF STRIP TILLAGE ADDED

15,600 EQIP ACRES OF NO TILLAGE ADDED

Connecting world class research with real-world water challenges

Colorado State University

SINGLE FIELD RESULTS

• Tillage Reductions

	Nitrate	Total Nitrogen	Total Phosphorus
Conventional	-	-	-
Reduced	21%	19%	4%
Strip	23%	21%	3%

• Irrigation Reductions

	Nitrate	Total Nitrogen	Total Phosphorus
Flood	-	-	-
Sprinkler	24%	13%	59%

• Split Application Reductions

	Nitrate	Total Nitrogen	Total Phosphorus
Single Application	-	-	-
Split Apply	9.9%	8.62%	9.7%

BASELINE

Total Nitrogen

• 5.453* lbs/acre/year

Total Phosphorus

• 0.328* lbs/acre/year

REDUCTION BY EQIP IRRIGATION

Total Nitrogen

• 5.408* lbs/acre/year (1% reduction TN)

Legend n irr Iba Processing 0.01 - 1.41 1.42 - 2.35 2.36 - 4.52 4.53 - 6.91 N Miles 0 25 50 100 200 150

Total Phosphorus

• 0.308* lbs/acre/year (6% reduction TP)

REDUCTION BY EQIP STRIP TILLAGE

Total Nitrogen

• 5.453* lbs/acre/year

Total Phosphorus

• 0.328* lbs/acre/year

REDUCTION BY EQIP NO TILLAGE

Total Nitrogen

• 5.453* lbs/acre/year

Total Phosphorus

• 0.328* lbs/acre/year

REDUCTION BY FULL ADOPTION

Total Nitrogen

• 3.940* lbs/acre/year (30% reduction TN)

Total Phosphorus

• 0.317* lbs/acre/year (3% reduction TP)

Discussion

• Tyler Wible

- 970.491.1933
- Tyler.Wible@colostate.edu
- Phil Brink
- 🔇 720.887.9944

@ phil@brinkinc.biz

OWSI Office

970.491.3016

- @ owsi@colostate.edu
 - owsi.colostate.edu

Connecting world class research with real world water challenges

> Urban Water Systems Integrating management of water systems with urban planning

Water for Agriculture

Sustaining agricultural production in a changing world

Water and Energy

Exploring tradeoffs among interconnected water and energy systems

Ecosystem Services

Improving physical, chemical, and biological integrity of water systems

owsi.colostate.edu Colorado State University

Connecting world class research with real-world water challenges

Colorado State University

CLEAN DASHBOARD

Purpose

Geospatial User Interface for watershed selection and comparison of management scenarios to summarize average annual nutrient loads by source.

eRAMS Analyses

- Wastewater Treatment Plants Annual Load (EPA STORET/WQX)
- Urban Stormwater Runoff
- Edge of Field Irrigated Agriculture Runoff
- Groundwater Seepage/Discharge (South Platte MODFLOW model)
- Forest and Rangeland runoff (USGS SPARROW)

CSIP Services

- csip-clean
- csip-clean-stormwater
- csip-wrap
- csip-cfa

Total Nitrogen

Environmental Resource Assessment & Management System (eRAMS)

A platform for development and deployment of web-based water analytics: Computationally scalable and accessible data and analysis tools

ERAMS

Technology Platform

