High Elevation Wildfire Aggravates Water Quality Concerns in the Cache le Poudre Watershed

Fire on The Mountain Sustaining CO Watersheds Avon, Colorado 6 Oct 2021

Chuck Rhoades & Tim Fegel - US Forest Service, Rocky Mountain Research Station Katie Willi & Matt Ross (CO State U.) Jared Heath & Richard Thorp (City of Ft Collins) Hally Strevey (Coalition for Poudre River Watershed)

Fires are Burning at Higher Elevations than Ever, Creating New Dangers

Hayley Smith, LA Times, SEPT. 14, 2021

"Forest fires of the western United States have advanced upslope over the past few decades, scorching territories previously too wet to burn." Alizadeh et al. 2021, PNAS

High Elevation / Subalpine Forests	Fire Return Interval
Spruce-Fir	150-300+ yrs
Lodgepole Pine	90-300+ yrs

10- 50 yrs

Low Elevation / Montane Forests Ponderosa Pine

		Spruce	Mixed		Grass	Rock	
	Lodgepole	Fir	Conifer	Ponderosa	Shrub	Alpine	Other
Mean	76.4	8.2	0.1	1.2	5.3	7.3	1.5
Min	13.5	0.3	0.0	0.0	0.7	0.0	0.2
Max	97.0	57.5	0.3	7.5	16.5	47.8	6.2

Gray Phase Fires

	Acres
2010-2019	150,000
2020	>600,000

Watershed Responses & Long-term Effects Track Burn Severity

Low Severity

Vegetation remains 'green.' OM layers not fully consumed. Soil structure, roots unchanged

Moderate Severity

Most (50-80%) ground cover, OM consumed. Foliage may remain in tree canopies.

High Severity

Consumption of nearly all pre-fire ground cover & surface organic matter.

Rhoades et al. 2019

2002 Hayman Fire

*14-15 yr post-fire

Nitrate & TDN 5-10X above background in Extensive & elevated in Moderate

Lasting changes in nutrient retention (>95% pre- vs 48% post-fire)

DOC highest for moderate burns

Sediment losses are minor

Severity at Watershed-Scale

Watershed	A	rea	Burn	Hi	Mod	Lo	No	Hi+Mod
	(km ²)	(acres)	(%)			%		
Sheep	7	1,766	100	14	57	29	0	71
Little Beaver	47	11,561	86	17	51	18	14	68
Black Hollow	17	4,294	88	12	51	24	12	63
Fish	13	3,242	86	11	46	29	14	57
Tunnel*	7	1,672	89	12	32	46	11	43
Bennett	37	9,209	70	4	33	32	30	38
Sevenmile*	19	4,789	70	2	25	44	30	26
Roaring*	15	3,751	57	2	27	28	43	29
N. Joe Wright	9	2,243	41	13	11	17	59	24
Beaver	57	14,003	43	1	18	25	57	19
Fall	13	3,176	23	8	7	8	77	15
S. Fk. Poudre*	183	45,197	33	2	13	19	67	14
S. Lone Pine	22	5,501	24	0	13	10	76	14
Pennock	47	11,519	16	0	1	15	84	2
Deadman	37	9,172	0	0	0	0	100	0
N. Fk. Poudre	19	4,604	0	0	0	0	100	0
12 burned &	4 unbu	Irned; * pre	e and p	ost-fire	data			

Project & Talk Overview

Overall Objectives

Examine the influence of the Cameron Peak fire on watersheds, water quality, aquatic ecosystems and water supply and storage and estimate downstream delivery of key constituents to water treatment utilities.

Expands on City of Fort Collins, Coalition for Poudre River Watershed, RMRS monitoring and citizen science.

Year 1 Activities

- 1) Characterize ash chemistry across the fire and major forest types. Ash, char and mineral soil
- 2) Track post-fire water quality responses in headwater catchments burned by the Cameron Peak fire and the CLP. Weekly, bi-monthly and storm event sampling.

What are your most serious post-fire water quality concerns?

1stAsh2ndSediment3rdNutrients4thCarbon5thMetal6thOther7thNone

Ash Chemistry – Varies with Depth, Ecosystem Type

		р	pH ANC		C	Ca K		NH_4		NO ₃		P	04		
		Mean	Max	Mean	Max	Mean	Max	Mean	Max	Mean	Max	Mean	Max	Mean	Max
				μεσ	ן L ⁻¹					m	g L ⁻¹				
Ash	Subalpine	8.1	8.6	1713.0	2701.9	30.5	51.1	11.9	33.7	0.9	2.4	0.7	2.1	4.0	5.4
	Montane	8.1	8.3	2736.9	4823.2	38.1	63.2	33.2	58.1	0.6	2.2	0.3	1.0	5.5	7.7
	Riparian	8.4	8.9	3210.1	4756.2	31.3	54.8	47.8	88.8	1.2	2.6	1.8	3.6	4.3	11.0
Char	Subalpine	7.5	8.2	2224.0	3359.1	36.8	49.6	15.2	48.7	1.8	2.8	1.7	2.5	5.4	8.3
O Horizon	Montane	7.9	8.4	2425.8	3175.6	38.1	52.3	35.9	57.1	1.3	2.8	1.7	2.1	8.1	13.7
	Riparian	8.1	8.4	3830.9	5054.3	55.1	86.3	43.0	62.5	2.6	7.9	4.7	15.7	8.0	12.0
A Horizon	Subalpine	6.4	7.1	1252.0	2031.3	22.7	42.9	5.5	9.4	1.7	2.6	0.3	0.8	0.2	0.5
	Montane	7.2	7.4	3941.8	5549.2	73.2	100.3	28.2	46.5	1.1	1.6	0.8	1.0	0.9	1.3
	Riparian	7.4	8.1	3614.0	4521.9	66.7	90.4	36.4	70.0	3.1	9.2	0.7	1.0	1.9	5.0

		Са	К	NH_4	NO ₃	PO ₄
TH 179 200				mg L ⁻¹		
	Ash	33.3	31.0	0.9	1.0	4.6
	Char OM	43.3	31.4	1.9	2.7	7.2
	A Horizon	54.2	23.3	2.0	0.6	1.0
ET MARS	Unburn O Horizon	17.6	13.3	3.4	1.0	4.9
	Unburn A Horizon	9.1	5.9	0.3	1.4	1.4
	Char / O Horz	2.5	2.4	0.5	2.8	1.5
	Burn vs Unburn A Horiz	5.9	4.0	6.2	0.4	0.7

Fresh Ash Differs from Residual Ash, Soils, Water

		Ash					
		2020	2021				
		Fresh	Residual	Δ			
к	$mg L^{-1}$	490.5	28.5	17			
Mg	11	87.1	7.6	12			
Са	11	192.5	32.4	6			
PO ₄	п	30.1	4.5	7			
NO ₃	н	13.1	1.0	13			
NH_4	11	1.3	0.9	1			
DTN	11	21.6	3.5	6			
DOC	"	252.6	47.2	5			
ANC	µeq L⁻¹	19378.6	2423.0	8			
Conductivity	µS cm⁻¹	3147.1	328.7	10			
рН		8.5	8.2				

Large concentration differences before and after the first winter. Fresh Ash: losses to wind and leaching into soils. Residual Ash: material available for Year 1 surface runoff and losses to stream.

Fresh Ash has elevated K compared to residual ash K is 50% in Fresh vs 20% in ash, soils, water

Tributary Water Quality Responses

Post-fire higher for most analytes

Cond, ANC, K, NO_3 : 1.5 to 3-fold higher PO_4 , Turbidity:> 5-fold higherpH:0.4 unit pH higher

Post-fire increased vs Pre-fire

2-fold increase
10-fold increase
100-fold increase

*12 burned & 4 unburned catchments 4 pre- vs post-fire comparisons

Extent Burned & Severity Determines Stream Chemistry

The overall extent of a watershed burned, and the extent burned at Hi + Mod severity impact water quality

> 50% Burn Extent Threshold

2X more than < 50% + Unburned ANC, SC, Na, K, Mg, Ca, NO₃, SO4 7X more PO₄; 6X more Turbidity

 NO_3 : Even watershed with lower extent burned were significantly higher than unburned

* 12 Burned & 4 Unburned catchments Spring & Summer 2021

Catchment Comparisons

	NO ₃	PO ₄	Burn	Hi + Mod
	m	g L ⁻¹		%
Fish	1.4	0.3	86	57
Little Beaver	0.9	0.2	86	68
Beaver	0.3	0.0	43	19
Bennett	0.4	0.2	70	38
S. Fk. Poudre	0.5	0.1	33	14
Pennock	0.1	0.0	16	0
Sheep	0.6	0.1	100	71
Black Hollow	0.6	0.1	88	63

Larger Responses:Extensive burning, burned headwaters, small catchmentsSmaller Responses:Large catchments, unburned headwaters

Summer Monsoon Storms – Major Watershed Changes

Fort Collins Utilities ceases taking water when turbidity exceeds 50 NTUs

			Storm Duration			
	Amount	Intensity (I ₁₀)	Downpour	Overall		
	inches	in hr ⁻¹	minutes			
Mean	0.4	0.8	16.7	133.1		
Max	0.8	1.5	28.0	264.0		

Summer Storms - Temporal Patterns in Stream Water

	Minutes to Peak						
	Mean	Max					
Conductivity	47	110					
Turbidity	124	300					
DOC	94	460					
DTN	80	440					
NH_4	96	460					
NO ₃	97	200					
PO ₄	190	520					
7 storms: Fish Ck							

Storm Events Mobilize Hillslope Ash

		Turbidity	Cond.	DOC	DTN	NH_4	NO ₃	PO_4
Storm Events	Mean	1495.0	184.4	52.5	2.5	0.5	2.5	0.7
Peak	Max	1670.0	272.6	86.0	4.1	1.2	5.4	1.2
Non-Storm	Mean	7.4	82.9	7.3	0.7	0.0	0.9	0.2
Monthly Mean	Max	15.3	109.4	10.7	1.4	0.1	1.5	0.4
Storm vs Non	Mean/Mean	202	2	7	3	10	3	4
X-fold increase	Max/Mean	226	3	12	6	25	6	7

*Summary from 7 storms in July & August at Fish Crk ISCO

The first storms were largest with the biggest water quality responses. The size and response both declined for latter storms.

Monsoon Storms Effect CLP Water Quality

Responses extend & increase downstream

> Maximum Values Turbidity 1150 NTUs DOC 21 mg/L DTN 2.3 " NO3 1.3 " PO4 0.4 "

* 4 storms (7 & 8/21) vs. non-storm, post-fire

Steps Toward Watershed Recovery

Legend

Cameron Peak

Mulch treatments to protect water quality, and speed recovery of soil productivity and vegetation.

Tree planting to rehabilitate highly impacted riparian vegetation and enhance watershed nutrient retention and improve water quality and aquatic habitat

Preliminary Post-fire Responses

Ash is high in alkalinity, K, N and P, and these constituents are responsible for changes in downstream water quality in Yr 1.

Intense rain events have major effects on stream water quality that propagate down the main stem of the CLP.

Waters quality in burned tributaries is altered compared to pre-fire conditions and unburned streams.

Post-fire effects track the extent and patterns of burning in headwaters catchments

Stream waters quality responses help prioritize restoration activities and gauge restoration success

Go to www.menti.com and use the code 32 51 12 8

Has your municipality, agency or watershed group had to respond to changes in post-fire water quality? Yes/No? If so, how?

Press ENTER to pause scroll

THANKS!

Contact: charles.c.rhoades@usda.gov

