Flodplain Heterogeneity Measurements & Metrics

October 5, 2021 Sustaining Colorado Watersheds Conference Emily Iskin, MS, PE

Floodplain Heterogeneity is...

Spatial differences in topography, vegetation, grain size and texture, soil moisture, and ponded or flowing water

- Is driven by active channel movement across the valley bottom
- Is important because it impacts storage of water, sediment, solutes, and organic matter
- Is largely unquantified!

How Can We Measure It?

Our research is based on field data collection and remote sensing...

Field Work

We define and delineate "patches" at each field site as we walk across the floodplain

- 5-10 transects per river reach, perpendicular to valley trend
- Travel along the transects identifying different patches, GPS the boundaries, and describe what they look like
 - Type and relative age/DBH of vegetation
 - Geomorphic characteristics: sediment size, channels, terraces, planform, gradient, log jams
 - Water: wetland, flowing side channel, seep

Remote Sensing

Satellite images allow for global assessment and analysis

- Compare field delineation to spectral/object-based classification
- Perform sensitivity analyses
- Use classified images to calculate floodplain heterogeneity

How Can We Quantify It?

We use metrics from the field of Landscape Ecology: *patch, class, landscape*

Example Metrics: normalized, bounded, scalable, and/or comparable

Metric Name	Metric Type	Limits (units)
Aggregation index	Aggregation	[0, 100]
Division index	Aggregation	[0, 1)
Interspersion and juxtaposition index	Aggregation	(0, 100]
Patch density	Aggregation	(0, 1x10 ⁶], (number/100 hectares)
Percentage of like adjacencies	Aggregation	[0, 100]
Largest patch index	Area and Edge	(0, 100]
Disjunct core area density	Core Area	>0, (number/100 hectares)
Modified Simpson's evenness index	Diversity	[0, 1)
Patch richness density	Diversity	>0, (number/100 hectares)
Relative patch richness	Diversity	(0, 100], Max
Shannon's evenness index	Diversity	[0, 1)
Simpson's diversity index	Diversity	[0, 1)
Simpson's evenness index	Diversity	(0, 1]
Perimeter-area fractal dimension	Shape	[1, 2]

Ideas & Questions?

References

- Baartman, J. E. M., Masselink, R., Keesstra, S. D., & Temme, A. J. A. M. (2013). Linking landscape morphological complexity and sediment connectivity. *Earth Surface Processes and Landforms*, 38(12), 1457–1471. https://doi.org/10.1002/esp.3434
- Choné, G., & Biron, P. M. (2016). Assessing the Relationship between River Mobility and Habitat. *River Research and Applications*, 32, 528–539. https://doi.org/10.1002/rra.2896
- Dennis, I. A., Coulthard, T. J., Brewer, P., & Macklin, M. G. (2009). The role of floodplains in attenuating contaminated sediment fluxes in formerly mined drainage basins. *Earth Surface Processes and Landforms*, 34(3), 453–466. https://doi.org/10.1002/esp.1762
- Hesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K., & Nowosad, J. (2019). landscapemetrics: an open-source R tool to calculate landscape metrics. *Ecography*, 42(version 1.5.2), 1648–1657. https://doi.org/10.1111/ecog.04617